Part Number Hot Search : 
B1505 109412 DS2009SF B78417A 9260D LBN140 6N30P D42C2
Product Description
Full Text Search
 

To Download ATA6870 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Features
* * * * * * * * * * * * *
12-bit Battery-cell Voltage Measurement Simultaneous Battery Cells Measurement in Parallel Cell Temperature Measurement Charge Balancing Capability - Parallel Balancing of Cells Possible Integrated Power Supply for MCU Undervoltage Detection Less than 10 A Standby Current Low Cell Imbalance Current (< 10 A) Hot Plug-in Capable Interrupt Timer for Cycling MCU Wake-ups Cost-efficient Solution Due to Cost-optimized 30V CMOS Technology Reliable Communication between Stacked ICs Due to Level Shifters with Current Sources and Checksum Monitoring of Data Daisy-chainable - Each IC Monitors up to 6 Battery Cells - 16 ICs (96 Cells) per String - No Limit on Number of Strings Package QFN48 7 mm x 7 mm
*
Li-Ion, NiMH Battery Measuring, Charge Balancing and Power-supply Circuit ATA6870 Preliminary
Applications
* Battery Measurement, Supply and Monitoring IC for Li-ion and NiMH Battery Systems
in Electric (EV) and Hybrid Electrical (HEV) Vehicles
Benefits
* Highest Safety Level for Li-ion Battery Systems in Combination with ATA6871 * Cost Reduction Due to Integrated Measurement Circuit and High Voltage Power-supply
1. Description
The ATA6870 is a measurement and monitoring circuit designed for Li-ion and NiMH multicell battery stacks in hybrid electrical vehicles. The ATA6870 monitors the battery-cell voltage and the battery-cell temperature with a 12-bit ADC. The circuit also provides charge-balancing capability for each battery-cell. In addition, a linear regulator is integrated to supply a microcontroller or other external components. Reliable communication between stacked ICs is achieved by level-shifters with current sources. The ATA6870 can be connected to three, four, five or six battery-cells. Up to 16 circuits (96 cells) can be cascaded in one string. The number of strings is not limited.
9116B-AUTO-10/09
2. Block Diagram
Figure 2-1. Block Diagram
To ATA6870 above
VDDHV MBAT7 PD_N
DISCH6
Cell 6: Reference ADC Cell Balancing
Digital Level Shifter
Standby Control
PD_N_OUT VDDHVP
3.3V Voltage Regulator
POW_ENA VDDHVM AVDD
MBAT6
MBAT2
3.3V Internal Voltage Regulator Digital Level Shifter
DVDD BIASRES
DISCH1 MBAT1 TEMPREF
Cell 1: Reference ADC Cell Balancing
Logic
Internal Biasing
TEMP2 TEMP1 NTC NTC TEMPVSS
Test
Cell Temperature Measuring
Digital Level Shifter
Interchip and Microcontroller Communication Interface
MISO_IN MOSI_OUT SCK_OUT CS_N_OUT CLK_OUT IRQ_IN CS_N SCK MOSI MISO IRQ CLK
MCU
GND AVSS DVSS SCANMODE PWTST
DTST
VDDFUSE
MFIRST
CS_FUSE
ATST
To ATA6870 below
2
ATA6870 [Preliminary]
9116B-AUTO-10/09
ATA6870 [Preliminary]
3. Pin Configuration
Figure 3-1. Pinning QFN48, 7 mm x 7 mm
CS_N_OUT SCK_OUT MOSI_OUT CLK_OUT DISCH6 VDDHV MBAT6 MBAT7 IRQ_IN MISO_IN VDDHVP
37
48
47
46
45
44
43
42
41
40
39
38
DISCH5 MBAT5 DISCH4 MBAT4 DISCH3 MBAT3 DISCH2 MBAT2 DISCH1 MBAT1 IRQ CLK
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
PD_N
36 35 34 33 32
VDDHVM PD_N_OUT POW_ENA PWTST BIASRES
ATA6870
31 30 29 28 27 26 25
TEMPREF
TEMP2 TEMP1 TEMPVSS AVSS AVDD ATST
SCANMODE
Table 3-1.
Pin Description
Pad Name DISCH5 MBAT5 DISCH4 MBAT4 DISCH3 MBAT3 DISCH2 MBAT2 DISCH1 MBAT1 IRQ CLK CS_N SCK MOSI MISO MFIRST Function Heatslug Output to drive external cell-balancing transistor Battery cell sensing line Output to drive external cell-balancing transistor Battery cell sensing line Output to drive external cell-balancing transistor Battery cell sensing line Output to drive external cell-balancing transistor Battery cell sensing line Output to drive external cell-balancing transistor Battery cell sensing line Interrupt output for MCU/ATA6870 below System clock Chip select input from MCU/ATA6870 below SPI clock input from MCU/ATA6870 below Master Out Slave In input from MCU Master In Slave Out output for MCU Select Master/Slave SPI data input SPI data output Remark
Pad Number Exposed Pad 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
VDDFUSE
MFIRST
CS_FUSE
DVDD
MOSI
DVSS
CS_N
MISO
DTST
GND
SCK
3
9116B-AUTO-10/09
Table 3-1.
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
Pin Description (Continued)
Pad Name DTST SCANMODE CS_FUSE VDDFUSE DVSS DVDD GND ATST AVDD AVSS TEMPVSS TEMP1 TEMP2 TEMPREF BIASRES PWTST POW_ENA PD_N_OUT VDDHVM VDDHVP PD_N MISO_IN MOSI_OUT SCK_OUT CS_N_OUT CLK_OUT IRQ_IN VDDHV MBAT7 DISCH6 MBAT6 Function Test-mode pin Test-mode pin Test-mode pin Test-mode pin Digital negative supply Digital positive supply input (3.3V) Ground Test-mode pin 3.3V Regulator output Analog negative supply Ground for temperature measuring Temperature measuring input 1 Temperature measuring input 2 Reference voltage for temperature measuring Internal supply current adjustment Test - mode pin Power regulator enable/disable Power down output Power regulator output to supply e.g. an external microcontroller Power regulator supply voltage Power down input Master In Slave Out input from ATA6870 above Master Out Slave In output for ATA6870 above SPI clock output for input of ATA6870 above Chip select output for input of ATA6870 above System clock output for input of ATA6870 above Interrupt input from ATA6870 above Supply voltage Battery cell sensing line Output to drive external cell-balancing transistor Battery cell sensing line Keep pin open (output) Keep pin open (output) Connected to AVDD Remark Keep pin open (output) Connected to VSSA Connected to VSSA Connected to VSSA
Pad Number
4
ATA6870 [Preliminary]
9116B-AUTO-10/09
ATA6870 [Preliminary]
4. ATA6870 System Overview
The ATA6870 can be stacked up to 16 times in one string. The communication with MCU is carried out on the lowest level through an SPI bus. The data on the SPI bus is transmitted to the 15 other ATA6870s using the communication interface implemented inside ATA6870. Figure 4-1. Battery Management Architecture with One Battery String
ATA6870
ATA6870
ATA6870
ATA6870 MCU
5
9116B-AUTO-10/09
Figure 4-2.
Battery Management Architecture with Several Battery Strings
ATA6870
ATA6870 MCU OPTO
ATA6870
ATA6870 MCU
To Battery Master Controller
6
ATA6870 [Preliminary]
9116B-AUTO-10/09
ATA6870 [Preliminary]
5. Absolute Maximum Ratings
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Unless otherwise specified all voltages to pin VSSA. Parameters Ambient temperature Junction temperature Storage temperature Battery cell voltage VVDDHV - VVMBAT7max VMBAT1 Supply voltage power regulator Operating supply voltage Supply voltage DVDD (regulator is Off) Supply voltage AVDD (regulator is Off) Test-input Reference voltage for temperature measuring (regulator is Off) Supply voltage VDDHVM (regulator is Off) Digital Ground Analog Ground Digital/Analog Ground Ground voltage for temperature measuring MBAT1 VDDHVP VDDHV DVDD AVDD VDDFUSE TEMPREF VDDHVM DVSS AVSS AVSS, DVSS TEMPVSS CLK, CS_N, SCK, MOSI, DTST, ATST, SCANMODE, MFIRST, POW_ENA, CS_FUSE, PWTST IRQ, MISO Input voltage for analog I/O pins Input voltage for digital high voltage input pins MBAT(i+1), MBAT(i) Pin Symbol TA TJ TS VMBAT(i+1) VMBAT(i) VVDDHV - VVMBAT7 VMBAT1 VVDDHVP VVDDHV VDVDD VAVDD VVDDFUSE VTEMPREF V VDDHVM VAVSS - VGND VAVSS - VGND VAVSS - VDVSS VTEMPVSS VCLK, VCS_N, VSCK, VMOSI, VDTST, VATST, VSCANMODE, VMFIRST, VPOW_ENA, VCS_FUSE, VPWTST VIRQ, VMISO Min. -40 -40 -55 -0.3 -5.5 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 Max. +85 +125 +150 +5.5 +0.3 +0.3 +33.6 +30 +5.5 +5.5 +5.5 VDD+0.3 +5.5 +0.3 +0.3 +0.3 +0.3 Unit C C C V V V V V V V V V V V V V V
Input voltage for logic I/O pins
-0.3
VDD + 0.3
V
-0.3 -0.3 VDDHV - 0.3
+5.5 VDD + 0.3 VDDHV + 0.3
V V V
TEMP1, TEMP2, VTEMP1, VTEMP2, VBIASRES BIASRES MISO_IN, IRQ_IN MOSI_OUT, SCK_OUT, CS_N_OUT, CLK_OUT PD_N PD_N_OUT DISCH(i) VMISO_IN, VIRQ_IN VMOSI_OUT, VSCK_OUT, VCS_N_OUT, VCLK_OUT V PD_N V PD_N_OUT VDISCH(i)
Voltage at digital high voltage output pins
VDDHV - 0.3
VDDHV + 0.3
V
Input: PD_N Output: PD_N_OUT Voltage at cell balancing outputs
VDDHV - 5.5 -5.5 VMBAT(i) - 0.3
VDDHV + 0.3 +0.3 VMBAT(i+1) + 0.3
V V V
7
9116B-AUTO-10/09
5. Absolute Maximum Ratings (Continued)
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Unless otherwise specified all voltages to pin VSSA. Parameters HBM ESD ANSI/ESD-STM5.1 JESD22-A114 AEC-Q100 (002) CDM ESD STM 5.3.1 Latch-up acc. to AECQ100-004, JESD78A 1, 12, 13, 24, 25, 36, 37, 48 LATCH-UP Pin Symbol Min. Max. Unit
2 ESD 500 750 100
kV
V V mA
6. Thermal Resistance
Parameters Package. QFN48 7x 7 Max. thermal resistance junction-ambient(1) Max. thermal resistance junction-case Note: Rthjamax RthjCmax 20 TBD K/W K/W Symbol Value Unit
1. Package mounted on 4 large PCB (per JESD51-7) under natural convention as defined in JESD51-2.
8
ATA6870 [Preliminary]
9116B-AUTO-10/09
ATA6870 [Preliminary]
7. Circuit Description and Electrical Characteristics
Unless otherwise specified all parameters in this section are valid for a supply voltage range of 6.9V < V D D H V < 30V and a battery cell voltage of V M B A T ( i + 1 ) - V M B A T ( i ) = 0V to 5V, -40C < TA < 85C. All values refer to pin VSSA, unless otherwise specified.
7.1
Operating Modes
The ATA6870 has two operation modes. 1. Power-down Mode (PDmode) 2. Normal Mode (NORM Mode)
7.1.1
Power-down Mode In Power-down Mode all blocks of the IC are switched off. The circuit can be switched from Power-down to ON Mode or back via the PD_N input. If the pin is connected to VDDHV via an external optocoupler, for example, the circuit is in ON Mode. If several ATA6870 are stacked, the power-down signal must be only provided for the IC on the top level of the stack. The next lower IC receives this information from the PD_N_OUT output of its upper IC. The PD_N_OUT pin must be connected to either the PD_N pin of the next lower ATA6870 or to VSSA.
9
9116B-AUTO-10/09
Figure 7-1.
Power-down
VDDHV MBAT7 PD_N
DISCH6
Cell 6: Reference ADC Cell Balancing
Digital Level Shifter
Standby Control
PD_N_OUT VDDHVP
3.3V Voltage Regulator
POW_ENA VDDHVM AVDD
MBAT6
ATA6870
MBAT2
3.3V Internal Voltage Regulator
DVDD BIASRES
Digital Level Shifter
DISCH1 MBAT1 TEMPREF
Cell 1: Reference ADC Cell Balancing
Logic
Internal Biasing
TEMP2 TEMP1 NTC NTC TEMPVSS
SCANMODE
Test
Cell Temperature Measuring
Digital Level Shifter
Interchip and Microcontroller Communication Interface
MISO_IN MOSI_OUT SCK_OUT CS_N_OUT CLK_OUT IRQ_IN CS_N SCK MOSI MISO IRQ CLK
VDDFUSE
DVSS
ATST
CS_FUSE
VDDHV MBAT7 PD_N
DISCH6
Cell 6: Reference ADC Cell Balancing
Digital Level Shifter
Standby Control
MFIRST
AVSS
PWTST
DTST
GND
PD_N_OUT VDDHVP
3.3V Voltage Regulator
POW_ENA VDDHVM AVDD
MBAT6
ATA6870
MBAT2
3.3V Internal Voltage Regulator
DVDD BIASRES
Digital Level Shifter
DISCH1 MBAT1 TEMPREF
Cell 1: Reference ADC Cell Balancing
Logic
Internal Biasing
TEMP1 NTC NTC TEMPVSS
Cell Temperature Measuring
Digital Level Shifter
TEMP2
Interchip and Microcontroller Communication Interface
MISO_IN MOSI_OUT SCK_OUT CS_N_OUT CLK_OUT IRQ_IN
CS_N SCK MOSI MISO IRQ CLK VDDFUSE MFIRST
Test
MCU
SCANMODE
CS_FUSE
AVSS
DVSS
DTST
10
ATA6870 [Preliminary]
9116B-AUTO-10/09
PWTST
ATST
GND
ATA6870 [Preliminary]
Table 7-1. Electrical Characteristics
Test Conditions Pin Symbol Min. Typ. Max. Unit Type*
No. Parameters Maximum allowed input current in Power-down 1.1 Mode (e.g., leakage current of an optocoupler) 1.2 Input current in ON Mode 1.3 Maximum voltage (pin PD_N left open)
PD_N
IPD_N IPD_N VVDDHV VPD_N tVDDON 2.5
50
A
A
PD_N IPD_N = 0 to 50 A min slope PD_N
5 5
mA V
A A
Propagation delay time 1.4 from Power-down Mode to NORM Mode Propagation delay time 1.5 from NORM Mode to Power-down Mode
1 mA I PD_N = ------------msec
DVDD
3
ms
A
DVDD
tVDDOFF
10
ms
A
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter
7.1.2
Normal Operating Mode (NORM Mode) The ATA6870 turns on when the PD_N signal is switched from low to high. The power supplies AVDD and DVDD as well as VDDHVM (if the input signal POW_ENA = high) are turned on. The configuration registers are set to their default values. In NORM Mode the ATA6870 can acquire analog data (voltage or temperature channels) upon request from the host microcontroller. When the host microcontroller orders an acquisition through the SPI bus, the IC starts digitizing all voltage and one temperature channel in parallel. The on-chip digital signal processor filters, in real time, the channel samples. When conversion and filtering are done, the data-ready interrupt to the host processor indicates the data availability. The MCU can now read the ADC result registers. The MCU reads the ATA6870's status registers to check each IC and to acknowledge the interrupt. When ATA6870 is in NORM Mode, the MCU can be active or in idle mode. In order to wake-up the MCU by an interrupt, the Low Frequency Timer (LFT) can be activated in ATA6870. Interrupt is signaled with a high level on IRQ pin. The LFT is re-programmable on the fly and can be reset through SPI, but is not stoppable. Figure 7-2. ATA6870 in NORM Mode
Acquisition Idle Idle
ASICs in NOMode
IRQ
Asserted
SPI
ACQ Cmd
Read status register
Read data burst mode
MCU
Background task
Send SPI Command
Background task/Idle
Interrupt Handling
Background task
Processing
11
9116B-AUTO-10/09
Table 7-2.
Electrical Characteristics
Test Conditions Pin VDDHV VDDHV Symbol VVDDHV IVDDHV Min. 6.9 Typ. Max. 30 15 Unit V mA Type* A A
No. Parameters 2.1 Supply voltage 2.2 Current consumption IVDDHV (Normal Mode)
Current consumption in Power-down mode 2.3 (PDmode) IVDDHV + IMBAT(i)max(1)
VMBAT(i+1) - VMBAT(i) = 3.7V
VDDHV
10
A
A
Imbalance from battery cell to battery cell in VMBAT(i+1) - 2.4 VMBAT(i) = 3.7V Power-down Mode (PDN Mode) Note: 1. Largest input current of the cell inputs MBAT(i)
MBAT(i+1)
IMBAT(i+1)
10
A
A
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter
7.2
Interface to Battery Cells
Each input line MBAT(i) and the supply lines VDDHV, AVSS can be protected by additional resistors and a filter capacitor as shown below. Figure 7-3. External Components between ATA6870 and the Battery Cells
R_VDDHV R_IN VDDHV MBAT(i+1)
Discharge Resistor Battery cell(i)
Cell(i)
DISCH(i)
R_IN R_VSS
MBAT(i) AVSS ATA6870
Battery cell
Board
MBAT(i) are high impedance input (~2 M). Thus, external components can be added to protect ATA6870 chip against current spikes and overvoltage at battery cell level.
12
ATA6870 [Preliminary]
9116B-AUTO-10/09
ATA6870 [Preliminary]
Table 7-3.
3.1 R_IN 3.2 R_VDDHV 3.3 R_VSS
Electrical Characteristics
Test Conditions Pin MBAT(i) VDDHV AVSS Symbol Min. Typ. Max. 1 50 50 Unit k Type* D D D
No. Parameters
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter
7.3
Reduced Number of Battery Cells Configuration
It is possible for ATA6870 to operate with a reduced number of cells: 3, 4, 5, and 6 cell operation are possible. In these cases, the cell-chip inputs corresponding to the missing cells should be connected to the upper cell potential of the module. Figure 7-4. Connection with 4 Cells only
VDDHV
MBAT7
PD_N PD_N_OUT VDDHVP POW_ENA VDDHVM
DISCH6 MBAT6
DISCH5 MBAT5 DISCH4 MBAT4 DISCH3 MBAT3
AVDD DVDD BIASRES
ATA6870
MISO_IN MOSI_OUT SCK_OUT CS_N_OUT
DISCH2 MBAT2
CLK_OUT IRQ_IN CS_N
DISCH1 MBAT1 SCANMODE TEMPREF TEMP2 DVSS AVSS TEMP1 TEMPVSS GND
SCK MOSI MISO VDDFUSE CS_FUSE MFIRST IRQ CLK
DTST
Battery cell 1 (MBAT1, MBAT2) and battery cell 6 (MBAT6, MBAT7) must always be used for the lowest/highest cell.
ATST
13
9116B-AUTO-10/09
7.4
ATA6870 External MCU Supply
The ATA6870 provides a 3.3V power-supply for external components such as the microcontroller unit (MCU). The input pin for this supply is pin VDDHVP, and the output pin is VDDHVM. This regulator is able to supply the MCU directly from the topmost battery cell of a string. The power regulators of all stacked ATA6870 are therefore put in serial configuration to avoid imbalance.The regulator can be disabled with the digital input pin POW_ENA.
Table 7-4.
Pin POW_ENA
Truth Table
Symbol Value Low High Function Voltage regulator disabled Voltage regulator enabled
VPOW_ENA
Logic levels: Low = VDVSS, High = VDVDD
14
ATA6870 [Preliminary]
9116B-AUTO-10/09
ATA6870 [Preliminary]
Figure 7-5. MCU Supply with the Internal Power Supply
VDDHV MBAT7 PD_N
Cell 6: Reference ADC Cell Balancing
DISCH6 MBAT6
Digital Level Shifter
Standby Control
PD_N_OUT VDDHVP
3.3V Voltage Regulator
POW_ENA VDDHVM AVDD
ATA6870
MBAT2
3.3V Internal Voltage Regulator
DVDD BIASRES
Digital Level Shifter
DISCH1 MBAT1 TEMPREF TEMP2
Cell 1: Reference ADC Cell Balancing
Logic
Internal Biasing
TEMP1 TEMPVSS
SCANMODE
Test
Cell Temperature Measuring
Digital Level Shifter
Interchip and Microcontroller Communication Interface
MISO_IN MOSI_OUT SCK_OUT CS_N_OUT CLK_OUT IRQ_IN CS_N SCK MOSI MISO IRQ CLK
VDDFUSE
AVSS
DVSS
CS_FUSE
MFIRST
PWTST
DTST
ATST
GND
+
VDDHV MBAT7 PD_N
Cell 6: Reference ADC Cell Balancing
DISCH6 MBAT6
Digital Level Shifter
Standby Control
PD_N_OUT VDDHVP
3.3V Voltage Regulator
POW_ENA VDDHVM AVDD
ATA6870
MBAT2
3.3V Internal Voltage Regulator
DVDD BIASRES
Digital Level Shifter
DISCH2 MBAT1 TEMPREF
Cell 1: Reference ADC Cell Balancing
Logic
Internal Biasing
+
Cell Temperature Measuring
TEMP1 TEMPVSS
Digital Level Shifter
TEMP2
Interchip and Microcontroller Communication Interface
MISO_IN MOSI_OUT SCK_OUT CS_N_OUT CLK_OUT IRQ_IN
CS_N SCK MOSI MISO IRQ CLK
Test
MCU
SCANMODE
CS_FUSE
GND
DVSS
DTST
VDDFUSE
MFIRST
AVSS
PWTST
ATST
15
9116B-AUTO-10/09
Table 7-5.
Electrical Characteristics
Test Conditions Pin VDDHVP VDDHVM VDDHVM
(1)
No. Parameters 4.1 Supply voltage 4.2 Output voltage 4.3 DC output current 4.4 Peak output current 4.5 Capacitor load(2) 4.6 Capacitor load(2) 4.7 High level input voltage 4.8 Low level input voltage 4.9 Hysteresis 4.10 Input current
Symbol VVDDHVP VVDDHVM IVDDHVM IVDDHVM
Min. 6.9 3.1
Typ. 3.3
Max. 33.3 3.5 20 50
Unit V V mA mA F nF V
Type* A A A A D D A A C A
VDDHVM VDDHVM VDDHVM POW_ENA POW_ENA POW_ENA VPOW_ENA = 0V to VDVDD POW_ENA
30 200 VPOW_ENA VPOW_ENA VPOW_ENA IPOW_ENA 0.05 x VDVDD -1 0.7 x VDVDD
33 220
0.3 x VDVDD
V V
+1
A
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter Notes: 1. Maximum current the power regulator can provide, time limited by thermal consideration only 2. These capacitors are mandatory
16
ATA6870 [Preliminary]
9116B-AUTO-10/09
ATA6870 [Preliminary]
Figure 7-6. MCU Supply with an External Power Supply
VDDHV MBAT7 PD_N
Cell 6: Reference ADC Cell Balancing
DISCH6 MBAT6
Digital Level Shifter
Standby Control
PD_N_OUT VDDHVP
3.3V Voltage Regulator
POW_ENA VDDHVM AVDD
ATA6870
MBAT2
3.3V Internal Voltage Regulator
DVDD BIASRES
Digital Level Shifter
DISCH2 MBAT1 TEMPREF TEMP2
Cell 1: Reference ADC Cell Balancing
Logic
Internal Biasing
TEMP1 TEMPVSS
SCANMODE
Test
Cell Temperature Measuring
Digital Level Shifter
Interchip and Microcontroller Communication Interface
MISO_IN MOSI_OUT SCK_OUT CS_N_OUT CLK_OUT IRQ_IN CS_N SCK MOSI MISO IRQ CLK
VDDFUSE
DVSS
CS_FUSE
VDDHV MBAT7 PD_N
Cell 6: Reference ADC Cell Balancing
DISCH6 MBAT6
Digital Level Shifter
Standby Control
PD_N_OUT VDDHVP
3.3V Voltage Regulator
MFIRST
PWTST
AVSS
DTST
ATST
GND
POW_ENA
VDDHVM
ATA6870
MBAT2
AVDD
3.3V Internal Voltage Regulator
DVDD BIASRES
Digital Level Shifter
DISCH2 MBAT1 TEMPREF TEMP2
Cell 1: Reference ADC Cell Balancing
Logic
Internal Biasing
TEMP1 TEMPVSS
Test
Cell Temperature Measuring
Digital Level Shifter
Interchip and Microcontroller Communication Interface
MISO_IN MOSI_OUT SCK_OUT CS_N_OUT CLK_OUT IRQ_IN CS_N SCK MOSI MISO IRQ CLK
MCU
SCANMODE
CS_FUSE
VDDFUSE
DVSS
DTST
ATST
GND
MFIRST
AVSS
PWTST
17
9116B-AUTO-10/09
7.5
7.5.1
Analog Blocks
Battery Voltage Measuring Figure 7-7. Block Diagram Battery Voltage Measurement
ATA6870
1.666V Reference gain MBAT(i+1) 12 bits incremental ADC
External
DVDD
Cell i
MBAT(i)
High voltage level shifter (digital)
Bitstream CLK
DISCH(i)
MUX Disch(i)
DVSS
The battery voltage measurement block contains * a 3-input multiplexer * a voltage reference, * a 12-bit ADC * the upper part of digital voltage level shifters 7.5.1.1 Input Multiplexer The multiplexer has 3 inputs. Each of the functions are described in the table below:
Table 7-6.
Inputs of the Multiplexer
Input V(MBAT(i+1), MBAT(i)) V(VREF(i)) V(MBAT(i), MBAT(i)) Function Input voltage measurement Gain error acquisition of ADC Offset error acquisition of ADC
The multiplexer inputs are controlled by SPI.
18
ATA6870 [Preliminary]
9116B-AUTO-10/09
ATA6870 [Preliminary]
7.5.1.2 12 Bits Incremental ADC The purpose of this cell is to convert an analog input into a 12-bit digital word.
Table 7-7.
Electrical Characteristics
Test Conditions Maximum input noise 0.5 mVrms Pin MBAT(i+1), MBAT(i) Symbol Min. -10 Typ. Max. +10 Unit mV Type* A
No. Parameters 5.1 Accuracy of voltage channel(1) Accuracy of voltage channel(1)(2)
5.2
Maximum input noise MBAT(i+1), 0.5 mVrms MBAT(i) VMBAT(i+1) - VMBAT(i) = 3.6V MBAT(i+1), MBAT(i) VMBAT(i+1), VMBAT(i) VLSB VRef MBAT(i+1), MBAT(i) MBAT(i+1), MBAT(i) CLK SCK tconv = (2
12
-7
+7
mV
A
5.3 Input voltage range 5.4 Input resolution (1 LSB) 5.5 Reference voltage 5.6 Offset voltage 5.7 Gain voltage 5.8 System clock 5.9 SPI interface clock 5.10 Conversion rate
(3)
0 1.5 1.667 410 655 450 500 8.194 50
5
V mV V LSB LSB/V
A A D A A D D D D
VMBAT(i+1), VMBAT(i) VMBAT(i+1), VMBAT(i) fCLK fSCK tconv
550
kHz ms Hz
0.5 x fCLK
+ 1) / fCLK MBAT(i+1), MBAT(i)
5.11 Input bandwidth
fBW
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter Notes: 1. The accuracy of the voltage channels is guaranteed with no external resistor in the MBAT(i), MBAT(i+1) lines. 2. Reduced temperature range (-20C to + 65C) 3. Conversion rate without readout times of SPI
Figure 7-8.
ADC output
3686D = 0.9D*212
Slope = (1502D - 410D)/1.667 = 655DLSB/V
ADC (VREF) 1502D
410D = 0.1*212 0 0 VREF 5 Input Voltage (MBATi+1, MBATi)
19
9116B-AUTO-10/09
In order to correct offset and gain, MBATi and VREF are measured:
adc ( VREF i ) - adc ( MBAT i ) Slope = ---------------------------------------------------------------------v ( VREFi )
(1)
Offset = adc(MBATi) adc(MBATi+1) = Slope x v(MBATi+1, MBATi) + Offset
adc ( MBATi+1 ) - adc ( MBAT i ) v ( MBAT i+1 MBAT i ) = ---------------------------------------------------------------------------- x v ( VREF i ) adc ( VREF i ) - adc ( MBATi )
(2)
Table 7-8.
Ideal ADC
ADC Input 0V Ideal ADC Output Code 410 1502 1851 2048 2375 2834 3686 0.9 x 212 0.5 x 212 Comments 0.1 x 212
VREF = 1.667V 2.2V 2.5V 3V 3.7V 5V
adc ( MBAT i+1 ) - 0.1 x 2 v ( MBAT i+1 MBAT i ) = 1.667 x ------------------------------------------------------------------12 1502 - 0.1 x 2
12
(3)
v(MBATi+1, MBATi) = 1.52656 x 10-3 x (adc(MBATi+1) - 410) Using this equation, the round error is less than one mV.
5 LSB = ------------------------------------------------------ = 1.5 mV 12 12 0.9 x 2 - 0.1 x 2
Compensation with 1st Order Correction As the MCU cannot perform a division operation,
1 ---------------------------------------------------------------------- is approximated in a first order polynomial equation: adc ( VREF i ) - adc ( MBAT i ) [ adc ( VREF i ) - 1502 ] - [ adc ( MBAT i ) - 410 ] 1 --------------------------------- - ------------------------------------------------------------------------------------------------------------------2 ( 1502 - 410 ) ( 1502 - 410 )
(4)
20
ATA6870 [Preliminary]
9116B-AUTO-10/09
ATA6870 [Preliminary]
With equation (3) and (4) we get the formula for calculating the analog input voltage (without division):
[ adc ( VREF i ) - 1502 ] - [ adc ( MBAT i ) - 410 ] 1 v ( MBAT i+1 , MBAT i ) = 1.667 x --------------------------------- - ------------------------------------------------------------------------------------------------------------------- x [ adc ( MBATi+1 ) - adc ( MBAT i ) ] 2 ( 1502 - 410 ) ( 1502 - 410 )
7.5.1.3
Acquisition Time and Clocking The acquisition time depends on the number of ATA6870s to be addressed. Table 7-9. Electrical Characteristics
SCK Frequency (kHz) 250 250 250 250 250 125 125 125 125 62.5 62.5 62.5 62.5 62.5 62.5 62.5 CLK Frequency (kHz) 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 Conversion Time (ms) 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 Total Acquisition Duration (ms)(1) 9.5 10.2 10.8 11.5 12.2 17.0 18.4 19.7 21.1 36.1 38.8 41.5 44.2 46.8 49.5 52.2
Number of ATA6870 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Notes:
1. The total acquisition time takes the following into account: - ADC conversion - Reading of voltage values in burst mode for all ATA6870 devices, - Reading of temperature values for all ATA6870 devices (only one temperature input is read).
SPI clock (pin SCK) must a maximum of half the frequency of the system clock CLK.
21
9116B-AUTO-10/09
7.5.2
Battery Cell Discharge Each battery cell can be discharged with an external resistor and an NMOS transistor. Figure 7-9. External Circuit for Cell Balancing
R_VDDHV R_IN VDDHV MBAT(i+1)
Discharge Resistor Battery cell(i)
Cell(i)
DISCH(i)
R_IN R_VSS
MBAT(i) AVSS ATA6870
Battery cell
Board
The pin DISCH(i) (Discharge for battery cell i) is intended to switch on the external discharge resistor in parallel to the battery cell to bypass charge current for cell balancing reasons. The pin DISCH(i) is a digital output: No discharge: VDISCH(i) = VMBAT(i) Discharge: VDISCH(i) = VMBAT(i+1)
Table 7-10.
Electrical Characteristics
Test Conditions Pin MBAT(i) IDISCH(i) = -10 A, MBAT(i+1) - MBAT(i) = 1.5V to 5V IDISCH(i) = -1 mA MBAT(i+1) - MBAT(i) = 3V to 5V Symbol MBAT(i+1) - MBAT(i) VDISCH(i) - VMBAT(i) VDISCH(i) - VMBAT(i) Min. 1.5 VMBAT(i+1) - 50 mV VMBAT(i+1) - 0.6V 60 140 Typ. Max. 5 Unit V Type* A
No. Parameters 6.1 Operating voltage range
6.2 High-level output voltage
DISCH(i)
V
A
6.3 High-level output voltage 6.4 Pull-down resistor(1)
DISCH(i) DISCH(i)MBAT(i)
V
A
k
A
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter Note: 1. Integrated pull-down resistor between pins DISCH(i) and MBAT(i)
22
ATA6870 [Preliminary]
9116B-AUTO-10/09
ATA6870 [Preliminary]
7.5.3 Temperature Channel The temperature sensors are based on a resistor divider using a standard resistor and an NTC resistor. This resistor divider is connected to the reference of the ADC for temperature measuring. As the ADC is sharing same reference value, the output of temperature measurement with ADC is ratio metric. Figure 7-10. Battery Cell Temperature Measurement
AVDD
TEMPREF
1.2V Reference
RES_REF2
RES_REF1 TEMP1 12 bits Incremental ADC OUT
TEMP2 RES_NTC2 RES_NTC1
Operation Register TEMPVSS
During one measuring cycle only one temperature input can be measured by the ADC. The channel can be selected in the Operation Register (0x02) by the TempMode bit (bit 3). The ADC output is equal to:
RES_NTC(1) 8- 8out = 2048 x 1 + -------------------------------------------------------------------------------- x ----- - ----- (RES_NTC(1) + RES_REF(1)) 15 10
Table 7-11.
Electrical Characteristics
Test Conditions Pin TEMPREF TEMPREF TEMP1 TEMP2 Symbol VTEMPREF - VTEMPVSS ITEMPREF VTEMP1 VTEMP2 RES_REF RES_NTC V(TEMPi, TEMPVSS) = 0.5 x V(TEMPREF, TEMPVSS) V(TEMPi, TEMPVSS) =0 931D 385D 1477D 956D 410D 1502D 0 0 1.2 Min. 1.1 Typ. 1.2 Max. 1.3 2 VTEMPREF VTEMPREF 22 800 981D 435D 1527D Unit V mA V V k k Type* A A A A D D A
No. Parameters 7.1 Reference voltage 7.2 Reference voltage output current
7.3 Input voltage range 7.4 Input voltage range 7.5 Resistor RES_REF 7.6 Resistor RES_NTC Code output for 7.7 value(RES_NTCx) = value (RES_REFx) 7.8 7.9 Code output for value(RES_NTC) = 0
A A
Code output for V(TEMPi, TEMPVSS) value(RES_NTC) = infinite = V(TEMPREF)
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter
23
9116B-AUTO-10/09
7.5.4
Internal Voltage Regulator The regulator output is pin AVDD. The pins AVDD and DVDD have to be connected together. An external filtering capacitor (10 nF recommended) is used to filter and stabilize the function. The regulator output can be used to supply outside functions at the price of power supply imbalance between battery cells.
Table 7-12.
Electrical Characteristics
Test Conditions Pin VDDHV AVDD AVDD Cload Symbol VVDDHV VAVDD IAVDD Min. 6.9 3.1 0 9 10 3.3 Typ. Max. 30 3.5 5 Unit V V mA nF Type* A A A D
No. Parameters 8.1 Supply voltage range 8.2 Regulated output voltage 8.3 Output current 8.4 Cload (load capacitor)
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter
7.5.5
Central Biasing This block generates a precise bias current to supply internal blocks of the IC. Connection of any external loads to this pin is not allowed.
Table 7-13.
Electrical Characteristics
Test Conditions Pin BIASRES Symbol VBIASRES RRefbias RRefbias BIASRES CExternal -1 Min. Typ. 1.2 121 +1 50 Max. Unit V k % pF Type* A D D D
No. Parameters 9.1 Biasing voltage 9.2 External resistor 9.3 Tolerance 9.4 Maximum external parasitic capacitor
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter
Figure 7-11. Internal Bias Current Generation
IBIAS
Bandgap 1.2V BIASRES RREFBIAS 121 k
24
ATA6870 [Preliminary]
9116B-AUTO-10/09
ATA6870 [Preliminary]
7.5.6 RC Oscillator Internal RC Oscillator Frequency
Test Conditions Pin Symbol fOsc Min. 45 Typ. 50 Max. 55 Unit kHz Type* A
Table 7-14.
No. Parameters 10.1 Oscillator frequency
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter
7.5.7
Power On Reset The Power On Reset is used to initialize the digital part at power-up. The Power On Reset circuit is functional when the voltage at pin DVDD is larger than VPOROP. There are two reset sources: System "hard reset" System hard reset occurs when the voltage at pin DVVD goes below the Power On Reset threshold. ATA6870 registers are set to their initial values. After t = tRESET, the MCU can access the ATA6870. Figure 7-12. Power On Reset
VPOROFF VPORON VPOROP VDVDD
VPOR
Table 7-15.
Electrical Characteristics
Test Conditions Pin DVDD DVDD DVDD Symbol VPOROP VPOROFF VPOROFF - VPORON tRESET 1.5 0.03 800 Min. Typ. Max. 0.8 2.5 Unit V V V s Type* A A C A
No. Parameters 11.1 Power On Reset Functional 11.2 Power On Reset Off 11.3 Power On Reset Hysteresis 11.4 Power On Reset Time
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter
25
9116B-AUTO-10/09
7.6
7.6.1
Digital Part
General Features The digital parts of the ATA6870 includes the following blocks: * 4-Wire-SPI Full Duplex Communication with External Host MCU * SPI System Protocol Management (Frames Decoding) and Configuration Registers Bank * Interrupt to MCU Management * Operations Decoding (Voltage and/or Temperature Acquisition) and Analog Part Control * Low Frequency Timer (50 kHz) for Wake-up Management
7.6.2
Host Interface Figure 7-13. Host Interface
VDDMicrocontroller Unit
CS_N SCK
VDVDD
SPI Master MCU
MOSI MISO IRQ
SPI
MFIRST
SPI Slave
ATA6870 (1)
The communication between ATA6870 (1) and its host MCU, as well as ATA6870 (n) and ATA6870(n-1) is based on a 4 wire serial/parallel SPI interface (CS_N, SCK, MISO, MOSI) and an interrupt line (IRQ). The SPI interface allows register read and write operations. The interrupt line indicates events that require host intervention. ATA6870(n)'s 4 wire-SPI bus inputs (CS_N, SCK, MOSI) are up-shifted through level shifters. They are internally connected to the outputs CS_N_OUT, SCK_OUT, MOSI_OUT and connected to ATA6870(n+1) (CS_N, SCK, MOSI). ATA6870(n)'s 4 wire-SPI bus output (MISO) and ATA6870(n)'s interrupt (IRQ) are down-shifted through level shifters and connected to ATA6870(n-1) (MOSI_IN, IRQ_IN) or host MCU (n = 1).
26
ATA6870 [Preliminary]
9116B-AUTO-10/09
ATA6870 [Preliminary]
7.6.3 Interrupt In NORM Mode (Normal Mode), the reasons for an interrupt request are: * The availability of measured data (data ready) When a voltage measurement is completed, the dataRdy flag is set in the status register. The ATA6870 cannot decode any new incoming operation until the dataRdy flag is released. * The low frequency timer (LFT) elapses (wakeup) The wakeup flag is set in the status register when the LFT elapses. The LFT is controlled via the SPI interface. * A transmission error is flagged during the last SPI transaction (the commError bit is set in the status register). * If an undervoltage condition occurs. The undervoltage function is controllable via SPI interface. A mask bit in the irqMask register corresponds to each interrupt source. The MCU must read the ATA6870 status register before the interrupt is cleared. With each SPI access a 16-bit IRQ state is sent via MISO to the MCU with the interrupt state of all stacked ATA6870 (see Section 7.6.4.1 "SPI Transaction Fields" on page 27). In PDmode (Power Down), if the digital control part and MCU are not supplied, neither SPI command nor interrupt are transmitted over the interface. 7.6.4 SPI Interface The full duplex SPI interface block allows communication with the host MCU using four wires (MISO, MOSI, SCK and CS_N). SPI transactions are based on a byte-access MSB first protocol. 7.6.4.1 SPI Transaction Fields Most of the time, the SPI frame is defined by 4 distinct fields: IDENTIFICATION (2 bytes): 16-bit chip identification (MOSI), in parallel 16-bit IRQ state (MISO) CONTROL (1 byte): 7-bit register address + 1-bit read/write information (MOSI) DATA (k byte): k*8 bits data (MOSI or MISO depending on the access direction) CHKSUM (1 byte): 8 bits if the Chksum_ena bit is set in the Ctrl register (register 0x01, bit 4)
27
9116B-AUTO-10/09
Figure 7-14. SPI Transaction Fields Organization
byte1 byte2 byte3 byte4 byte5 to n-1 byte n
CS_N
MOSI
ChipID1
ChipID0
CONTROL
DATA
....
CHKSUM
(1)
MISO
IRQID1
IRQID0 SPI write access
CS_N
(1)
MOSI
ChipID1
ChipID0
CONTROL
CHKSUM
MISO
IRQID1
IRQID0 SPI read access
DATA
....
Note:
1. Only send if chksum_ena bit set to 1 in the Ctrl register
7.6.4.2
Identification Field ATA6870 Chip Identification The two chip identification bytes are sent over MOSI to the ATA6870(n) in the chain. The ATA6870(n) checks the LSB. When LSB=1, the information is for this device. The SPI address will be decoded and the information processed. Independent from this the identification bytes are shifted by one bit to the right and transferred to the next ATA6870(n) in the chain. The 2 identification bytes allows the identification of up to 16 ATA6870s. .
28
ATA6870 [Preliminary]
9116B-AUTO-10/09
ATA6870 [Preliminary]
Figure 7-15. Identification Field: Chip-ID Reception
IDENTIFICATION FIELD CS_N ATA6870 (1) MOSI_IN ATA6870 (2) MOSI_IN ATA6870 (3) MOSI_IN ATA6870 (4) MOSI_IN ATA6870 (n>4) MOSI_IN
0x00 0x00 0x00 0x00 0x00
0x08 0x04 0x02 0x01 0x00
CONTROL CONTROL CONTROL CONTROL CONTROL
DATA DATA DATA DATA DATA
ATA6870 (1->3) identification field has lsb = 0 => device is not affected. ATA6870 (4) identification Shift it "on the fly" once field has lsb = 1 => decode to the right SPI access. Shift it "on the fly" once to the right
ATA6870 (>4) identification field has lsb = 0 => device is not affected. Shift it "on the fly" once to the right
7.6.4.3
ATA6870 IRQ Identification Figure 7-16. IRQ Propagation Scheme
IRQ_IN
irq_int ATA6870 (n)
IRQ
IRQ_IN
irq_int ATA6870 (n-1)
IRQ
IRQ_IN
irq_int ATA6870 (1)
IRQ
MCU
29
9116B-AUTO-10/09
ATA6870(n) IRQ output is connected to ATA6870(n-1) IRQ_IN input. ATA6870(n-1) IRQ output is a logic OR between IRQ_IN and its internal irq_int signal. ATA6870(1) IRQ output is connected to MCU. Figure 7-17. Identification Field: Interrupt State Emission
CS_N ATA6870 (1) MISO ATA6870 (2) MISO ATA6870 (3) MISO
Master SPI receives identification word = 0x2000 = 213 = 2m. This means ATA6870 number (16-m = 16-13) = 3 has IRQ pending.
0x20 0x40 0x80
0x00 0x00 0x00
ATA6870 (16) MISO
0x00
0x00
ATA6870 (3) IRQ is set. => ATA6870 (3) sets the MSB of the first byte to be shifted out. Others bits are those coming from upper ATA6870, shifted once to the right.
Others ATA6870s assert the MSB of the first byte to 0. Others bits are those coming from upper ATA6870, shifted once to the right.
Note: n = IC number m = bit number m = n -1
1 < = n < = 16 0 < = m < = 15
With each SPI access, a 16- bit IRQ state is send via MISO synchronous to the identification field to the MCU with the interrupt state of all stacked ATA6870. The MCU, interrupted by an ATA6870, has to send the identification field to check the IRQ levels (in that case the checksum is not considered). It is also possible to continue the transaction with CONTROL and DATA field. The MCU decodes the identification field shifted in MISO input. When bit m is set, ATA6870(16-m) is requesting interrupt. Figure 7-18. Identification Field
CS_N
SCK
MOSI
M(16) M(15) M(14) M(13) M(12) M(11) M(10) M(9)
M(8) M(7) M(6) M(5) M(4) M(3) M(2) M(1)
MISO
I(1)
I(2)
I(3)
I(4)
I(5)
I(6)
I(7)
I(8)
I(9)
I(10) I(11) I(12) I(13) I(14) I(15) I(16)
30
ATA6870 [Preliminary]
9116B-AUTO-10/09
ATA6870 [Preliminary]
7.6.4.4 CONTROL Field The CONTROL field defines the register to access and the direction (read/write). The size of the data (8, 16, or 112 bits) is defined by the address value in the CONTROL field.
Table 7-16.
Control Field
Bit7 A6 Bit6 A5 Bit5 A4 Bit4 A3 Bit3 A2 Bit2 A1 Bit1 A0 Bit0 W/Rd
CONTROL Field
7.6.4.5
DATA Field The DATA field can be composed of 1, 2, or 14 bytes depending on the accessed register. Irrespective of the data direction, a byte is always transmitted with MSB first; a multi-byte word is transmitted with MSByte first.
Figure 7-19. CONTROL and DATA Fields - 8-bits Register Write
CS_N
SCK
MOSI
A(6)
A(5)
A(4)
A(3)
A(2)
A(1)
A(0)
1
D(7)
D(6)
D(5)
D(4)
D(3)
D(2)
D(1)
D(0)
MISO
Data not relevant
Data not relevant
Figure 7-20. CONTROL and DATA Fields - 8-bits Register Read
CS_N
SCK
MOSI
A(6)
A(5)
A(4)
A(3)
A(2)
A(1)
A(0)
0
Data not relevant
MISO
Data not relevant
D(7)
D(6)
D(5)
D(4)
D(3)
D(2)
D(1)
D(0)
Figure 7-21. CONTROL and DATA Fields - 16-bits Register Write
CS_N
SCK
MOSI
A(6) A(5) A(4) A(3) A(2) A(1) A(0)
1
D(15) D(14) D(13) D(12) D(11) D(10) D(9) D(8)
D(7) D(6) D(5) D(4) D(3) D(2) D(1) D(0)
MISO
Data not relevant
Data not relevant
Data not relevant
31
9116B-AUTO-10/09
Figure 7-22. CONTROL and DATA Fields - 16-bits Register Read
CS_N
SCK
MOSI
A(6) A(5) A(4) A(3) A(2) A(1) A(0)
0
MISO
Data not relevant
D(15) D(14) D(13) D(12) D(11) D(10) D(9) D(8)
D(7) D(6) D(5) D(4) D(3) D(2) D(1) D(0)
In order to retrieve results from all channels in one ATA6870 without having to request for each channel, an SPI 112-bit read-only "burst access" (dataRd16Burst register; address = 0x7F) is implemented. When requested, the ATA6870 outputs its 6 voltage channels V6 to V1 and one of the two temperature channels T2 and T1 in sequence on the SPI bus. The diagrams below show the CONTROL and DATA fields of such an access. Figure 7-23. CONTROL and DATA Fields - 112-bits Register Read
CS_N
SCK
MOSI
1
1
1
1
1
1
1
0
MISO
Data not relevant
0
0
0
0
D(11) D(10) D(9) D(8)
D(7) D(6) D(5) D(4) D(3) D(2) D(1) D(0)
Channel V6 CS_N
SCK
MOSI
MISO
0
0
0
0
D(11) D(10) D(9) D(8)
D(7) D(6) D(5) D(4) D(3) D(2) D(1) D(0)
Channel V1 CS_N
SCK
MOSI
MISO
0
0
0
0
D(11) D(10) D(9) D(8) D(7) D(6) D(5) D(4) D(3) D(2) D(1) D(0)
Channel temperature T1 or T2
32
ATA6870 [Preliminary]
9116B-AUTO-10/09
ATA6870 [Preliminary]
One ATA6870 frame corresponds to the set of results obtained in one ATA6870. An ATA6870 frame is formatted as follows: Figure 7-24. SPI Access to dataRd16burst Register 0x7F
Voltage channels 16 bit ADC6 16 bit ADC5 16 bit ADC4 16 bit ADC3 16 bit ADC2 16 bit ADC1 Temp channel 16 bit ADCT
Padding: 0x00
msb
12-bit ADC data
lsb
When reading data of chained ATA6870, data is transferred as follow: Figure 7-25. Example with two ATA6870 in a Chain
CS_N SCK MOSI MISO
SPI Clock
Rd Reg command chip1
SPI Clock
Rd Reg command chip2
ATA6870 #1 Frame
ATA6870 #2 Frame
7.6.4.6
Communication Error Correct communication can be verified using various functions of the ATA6870. For internal synchronization, it is mandatory to keep CLK running during any SPI access; CLK must be set on 4 clock cycles (at least) before SPI access starts, and must be kept on 4 clock cycles (at least) after SPI access ends up. Keeping at least 4 CLK clock cycles between two consecutive SPI accesses is mandatory. If this is not the case, the ATA6870s will detect an error in communication. The CommError bit will be set in the Status Register 0x06).
Figure 7-26. SPI Access and CLK Activity
CLK OFF 4 clk_ticks SPI ACCESS CLK ON 4 clk_ticks SPI ACCESS 4 clk ticks CLK_OFF
The ATA6870 verifies that complete bytes (8 bits long) are always transmitted. A transition starts when CS_N goes to low and it ends when CS_N goes to high. The number of clock cycles (signal CLK) is monitored during the transition. This number of clock cycles has to be modulo 8. If the CS_N length is not modulo 8 clock cycles, the bit CommError is set in the Status register. This will cause an interrupt to the MCU if the CommError is not masked by the commErrorMsk bit in the IrqMask register.
33
9116B-AUTO-10/09
7.6.4.7
CHKSUM Field The ATA6870 provides the possibility of verifying the transmitted data using a checksum. Setting chksum_ena bit to 1 in the Ctrl register (default = 0) activates the checksum feature. The chksum field is an 8-bit checksum computed from the proceeding data (control and data fields, byte 3 to byte n-1). It is based on the polynomial x8+x2+x1+1. The way it is computed is depicted below: Figure 7-27. LFSR-based Checksum Computation
F0i serial bitstream MSB first z-1 F1i z-1 F2i z-1 F3i z-1 F4i z-1 F5i z-1 F6i F6o z-1
The checksum is calculated from the CONTROL field and DATA field by a polynomial division. The DATA field can consist of 1 byte up to 14 bytes (112-bit read-only "burst access"). The IDENTIFICATION field (2 bytes) is not used to generate the checksum. The checksum is always sent by the microcontroller, independent of read write mode. The checksum is in the LFSR (Linear Feedback Shift Register) when the complete bitstream (the whole fields of the transaction) followed by 0x00 have been shifted in the LFSR. The checksum verification on the complete data transmission was OK when the complete bitstream followed by the checksum have been shifted in the LFSR, and the content of the LFSR is 0x00. If this is not the case, the receiving ATA6870 will set the chkError bit in the status register. This will cause an interrupt to the MCU if the chkError is not masked by the chkErrorMsk bit in the IrqMask register. See the example below. The checksum is serially computed from the 8-bit value 0x57. So the bitstream 0x5700 is shifted in the LFSR. The resulting checksum is [f6o, f6i, f5i ... f0i] at the last shift in cycle:
Table 7-17.
checksum = [f6o, f6i, ... f0i] = 0xA2
Input X 0 1 0 1 0 1 1 1 0 0 0 0 f01 0 0 1 0 1 0 1 1 1 0 1 0 1 f1i 0 0 0 1 0 1 0 1 1 1 1 1 1 f2i 0 0 0 0 1 0 1 0 1 1 0 1 0 f3i 0 0 0 0 0 1 0 1 0 1 1 0 1 f4i 0 0 0 0 0 0 1 0 1 0 1 1 0 f5i 0 0 0 0 0 0 0 1 0 1 0 1 1 f6i 0 0 0 0 0 0 0 0 1 0 1 0 1 f6o 0 0 0 0 0 0 0 0 0 1 0 1 0
5D
7D
0D
34
ATA6870 [Preliminary]
9116B-AUTO-10/09
ATA6870 [Preliminary]
Table 7-17. checksum = [f6o, f6i, ... f0i] = 0xA2 (Continued)
Input X 0 0D 0 0 0 f01 0 0 1 1 0 f1i 0 1 1 0 1 0x2 f2i 0 1 0 0 0 f3i 0 0 1 0 0 f4i 0 1 0 1 0 f5i 0 0 1 0 1 0xA f6i 0 1 0 1 0 f6o 0 1 1 0 1
During an SPI write access, the checksum is computed by the MCU and sent MSB first in the CHKSUM field. For an SPI read access, the checksum is computed by the ATA6870 and is checked by the MCU. During CHKSUM, MCU has to send 0x00 on MOSI, and must check that its own LFSR equals 0x00 at the end of CHKSUM field. 7.6.4.8 Device Position For the ATA6870 (1), this is the device on the lowest level, the SPI has to work as a standard logic CMOS interface to the MCU. The SPI's between stacked ATA6870 have to work as level-shifters based on current sources. These different physical interfaces can be selected by the Pin MFIRST.
Table 7-18.
Device Position
Configuration ATA6870 (2) to ATA6870 (n) ATA6870 (1) 0 1
MFIRST
Table 7-19.
Electrical Characteristics
Test Conditions Pin MFIRST MFIRST MFIRST VMFIRST = 0V to VDVDD MFIRST Symbol MFIRST MFIRST MFIRST MFIRST 0.05 x DVDD -1 +1 Min. 0.7 x DVDD 0.3 x DVDD Typ. Max. Unit V V V A Type* A A C A
No. Parameters 12.1 High level input voltage 12.2 Low level input voltage 12.3 Hysteresis 12.4 Input current
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter
35
9116B-AUTO-10/09
7.6.5 7.6.5.1
Digital Inputs and Outputs Digital Output Characteristics Digital Output Characteristics (MISO, IRQ) If the ATA6870 is configured as first IC (master) in a string (MFIRST = 1), these pins are configured as an open drain output. If the ATA6870 is configured to be a stacked IC (MFIRST = 0), the output signals MISO and IRQ coming from the upper IC need to be transferred to the MISO and IRQ outputs of the master in the string via the MISO_IN and IRQ_IN inputs. In this case the MISO and IRQ outputs act as level shifters based on current sources.
Table 7-20.
Electrical Characteristics
Test Conditions IOUT = +5 mA MFIRST = 1 0.3V, MFIRST = 0 0.3V, MFIRST = 0 Pin MISO, IRQ MISO, IRQ MISO, IRQ Symbol VMISO, VIRQ IMISO, IIRQ IMISO, IIRQ -13 -65 Min. Typ. Max. 0.2 x VDD -8 -40 Unit V A A Type* A A A
No. Parameters 13.1 Low level output voltage 13.2 Low level output current 13.3 High level output current
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter
Digital Output Characteristics (MOSI_OUT, SCK_OUT, CS_N_OUT, CLK_OUT) These outputs act as level shifters based on current sources. They transfer the input signals MOSI_OUT, SCK_OUT, CS_N_OUT, CLK_OUT to the next IC above. If the ATA6870 is the IC on the top level of a string, these outputs must be connected to VDDHV.
Table 7-21.
Electrical Characteristics
Test Conditions VDDHV + 1V to VDDHV + 2V VDDHV + 1V to VDDHV + 2V Pin
(1)
No. Parameters 14.1 Low level output current 14.2 High level output current
Symbol V(1) V(1)
Min. 25 -1
Typ.
Max. 55 +1
Unit A A
Type* A A
(1)
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter Note: 1. MOSI_OUT, SCK_OUT, CS_N_OUT, CLK_OUT
36
ATA6870 [Preliminary]
9116B-AUTO-10/09
ATA6870 [Preliminary]
7.6.5.2 Digital Input Characteristics Digital Input Characteristics (MISO_IN, IRQ_IN)
Table 7-22.
Electrical Characteristics
Test Conditions (VDDHV + 1.4V) 0.3V (VDDHV + 1.4V) 0.3V Pin MISO_IN, IRQ_IN MISO_IN, IRQ_IN Symbol IMISO_IN IIRQ_IN IMISO_IN IIRQ_IN Min. 13 40 Typ. Max. Unit A A Type* A A
No. Parameters 15.1 Low level input current 15.2 High level input current
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter
Digital Input Characteristics (CS_N, SCK, MOSI, CLK)
Table 7-23.
Electrical Characteristics
Test Conditions MFIRST = 1 MFIRST = 1 MFIRST = 1 MFIRST = 1 MFIRST = 1 MFIRST = 0, V(1) = 1V to 2V MFIRST = 0 V(1) = 1V to 2V
(1)
No. Parameters 16.1 High level input voltage 16.2 Low level input voltage 16.3 Hysteresis 16.4 High level input current 16.5 Low level input current 16.6 Low level input current 16.7 High level input current
Pin
(1)
Symbol V(1) V(1) V(1) I(1) I
(1)
Min. 0.7 x DVDD
Typ.
Max. DVDD 0.3 x DVDD
Unit V V V
Type* A A C A A A A
(1)
(1)
0.1 x DVDD 50 -130 -55 -1 100 -70 -35 +1
A A A A
I(1) I(1)
(1)
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter Note: 1. CS_N, SCK, MOSI, CLK
Table 7-24.
Propagation Delay Timing
Test Conditions Rpull-up = 5.1 k Load capacitor max. = 15 pF MFIRST = 0, 1 > 10% input to > 90% output Rpull-up = 5.1 k Load capacitor max. = 15 pF MFIRST = 0, 1 > 10% input to > 90% output Pin
(1)
No. Parameters 17.1 Propagation delay Upper IC to lower IC
Symbol
Min.
Typ.
Max. 110
Unit ns
Type* A
Propagation delay 17.2 Lower IC to upper IC
(2)
140
ns
A
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter Notes: 1. MISO_IN, IRQ_IN to MISO, IRQ 2. SCK, MOSI, CS_N, CLK to SCK_OUT, MOSI_OUT, CS_N_OUT, CLK_OUT
37
9116B-AUTO-10/09
7.6.5.3
Test-mode Pins The test-mode pins DTST, ATST, PWTST (outputs) have to be kept open in the application. The test-mode pins SCANMODE and CS_FUSE (inputs) have to be connected to VSSA. These inputs have an internal pull-down resistor. The test-mode pin VDDFUSE is a supply pin. It must also be connected to VSSA.
Table 7-25.
Input Characteristics Pins SCANMODE, CS_FUSE, VDDFUSE
Test Conditions Pin Symbol Min. 50 Typ. Max. 200 Unit k Type* A SCANMODE, RSCANMODE, CS_FUSE RCS_FUSE
No. Parameters 18.1 Pull-down resistor
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter
7.7
7.7.1
Operations
Voltage and Temperature Measurement At startup, the ATA6870 is supplied and is waiting for any operation request. The available operations are: * 6 channels voltage acquisition with a temperature acquisition - with voltage = V(MBATi+1, MBATi) (standard operation) and with voltage = V(TEMP1 or TEMP2, TEMPVSS) (standard operation) - with voltage = V(MBATi, MBATi) (offset calibration: CalOffset operation) and with voltage = V(TEMPVSS, TEMPVSS) (offset calibration: CalOffset operation) - with voltage = V(VREFi, MBATi) (gain calibration: CalGain operation) and with voltage = V(TEMPREF, TEMPVSS) (gain calibration: CalGain operation) Operation completion is flagged to the host MCU via the IRQ output in conjunction with dataRdy bit set in the status register. In order to retrieve the full results in a single access, the user has to access the dataRd16burst register (112 bits). Getting the results of a single channel (voltage or temperature) is also possible. For this, first select the channel to read through the ChannelReadSel register, then retrieve the channel value through the DataRd16 register. It is not possible to order a new operation until the previous operation has been acknowledged. The host MCU acknowledges the interrupt by reading the status register. This resets the dataRdy bit as well as the IRQ output, and enables the ATA6870 to start the next operation. Writing NoOp in the Operation register during an operation running aborts the current operation. In this case, the dataRdy bit is not set and interrupt is not requested to the host MCU. The Opstatus register flags whether operation is running, aborted, ended, or no operation is running.
38
ATA6870 [Preliminary]
9116B-AUTO-10/09
ATA6870 [Preliminary]
7.7.2 Discharge Function Each channel is independently dischargeable. Discharge is activated or deactivated by the register ChannelDischSel. Low Frequency Timer Function A low frequency timer (LFT), synchronous to internal 50 kHz oscillator provides the host MCU with a low power timer, which useful to either synchronize operations in the host MCU or monitor the ATA6870's activity. The LFT elapsing asserts an interrupt to the host MCU if the corresponding mask bit in the IrqMask register is not set. Default is LFT not enabled. To enable the LFT, set the LFTimer_ena bit to 1 in the Ctrl register. LFT counting time is fully programmable in the register LFTimer. Changing the LFTimer register restarts the LFT if the new counting time is smaller than the current value of the LFT. Otherwise, LFT runs until it reaches the new end value. Asserting LFTRst bit in the Rstr register resets and restarts the LFT if the LFT is enabled. Otherwise, LFT is reset but not started. Each ATA6870 will assert its own interrupt when the timer elapses. Depending on how the timer is used, the host MCU may mask LFTdone interrupts in the whole ATA6870s chain, except the first one. As internal RC oscillators are not synchronized, this prevents the MCU from being interrupted each time one of the LFT elapses. 7.7.4 Undervoltage Detection A programmable undervoltage detection function is embedded in the ATA6870. After being digitalized, each of the 6 voltages is compared to a programmable threshold defined in the UdvThresh register. If one of the six channels is out of the range defined by the threshold, an interrupt is requested to the host MCU if the corresponding udv mask bit is not set in the IrqMask register. The default threshold is 1.5V. As soon as MCU has acknowledged, undervoltage information is no more available to MCU, because status register is cleared when MCU reads it out. As a consequence, the next undervoltage interrupt cannot occur until the ATA6870 leaves its current undervoltage state.
7.7.3
39
9116B-AUTO-10/09
7.8
Registers
Registers are read and written through the SPI interface.
Table 7-26.
Register Address 0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x10 0x11 0x12 0x7F
Register Mapping
Control Field Control Field Read Mode Write Mode 0x00 0x02 0x04 0x06 0x0A 0x0C 0x10 0x12 0x14 0x16 0x18 0x1A 0x20 0x22 0x24 0xFE 0x03 0x05 0x09 0x0B 0x13 0x15 0x17 0x1B 0x21 0x25 Register Name RevID Ctrl Operation OpStatus Rstr IrqMask Status ChannelUdvStatus ChannelDischSel ChannelReadSel LFTimer CalibStatus FuseCtrl UdvThresh DataRd16 ATA6870Test DataRd16Burst Access R RW RW R W RW R R RW RW RW R RW RW R RW R Type 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 16 bits 16 bits 16 bits 112 bits Function Revision ID/value Mfirst, pow_on Control Register Operation request Operation status Software reset Mask interrupt sources Status interrupt sources Channels undervoltage status Select channel to discharge Select channel to read Low Frequency Timer control Reserved Reserved Undervoltage detection threshold Single access to selected channel value Reserved Burst Access to the whole channels (6 voltage and 1 temperature)
40
ATA6870 [Preliminary]
9116B-AUTO-10/09
ATA6870 [Preliminary]
7.8.1 7.8.1.1 Registers Content RevID Register Table 7-27. RevId Register Overview
RevID 0x00 6 x 5 x 4 pow_en 3 Mfirst Reset Value 2 1 RevID 0x02 0 (lsb)
Register Address 7 (msb) x
Table 7-28.
RevId Register Content
Description ATA6870 revision number, revision B: 0x02 Status input pin MFIRST Status input pin POW_EN
Bit Field RevID Mfirst pow_en
7.8.1.2
Ctrl Register Table 7-29. Ctrl Register Overview
Ctrl 0x01 6 x 5 x 4 3 Reset Value 2 1 x 0x00 0 (lsb) x
Register Address 7 (msb) x
Chksum_ena LFTimer_ena TFMODE_ena
Table 7-30.
Ctrl Register Content
Description 0: Prevent ATA6870 to switch to test mode 1: Not allowed for customer use 0: Disable internal Low Frequency Timer 1: Enable internal Low Frequency Timer 0: Disable SPI transaction checksum computation/check 1: Enable SPI transaction checksum computation/check
Bit Field TFMode_ena LFTimer_ena Chksum_ena
7.8.1.3
Operation Register Table 7-31. Operation Register Overview
Operation 0x02 6 x 5 OpMode 4 3 TempMode Reset Value 2 VoltMode 1 0x02 0 (lsb) OpRqst
Register Address 7 (msb) x
41
9116B-AUTO-10/09
Table 7-32.
Operation Register Content
Description 0: NoOp: No Operation, or abort current operation 1: AcqRqst: Start the analog to digital conversion An interrupt is generated when data is available in DataRd16/DataRd16Burst. 00: Caloffset: select V(MBAT(i), MBAT(i)) as input of voltage channels. (offset calibration) 01: AcqV: select V(MBAT(i+1), MBAT(i)) as input of voltage channels (default) 10: Not allowed 11: Calgain: select V(vref(i)) as input of voltage channels. (gain calibration) 0: Select TEMP1 input pin as input of temperature channel 1: Select TEMP2 input pin as input of temperature channel 00: 6 voltage channels and temperature acquisition 01: No acquisition performed 10: No acquisition performed 11: No acquisition performed
Bit Field OpRqst
VoltMode
TempMode
OpMode
When a conversion operation is finished and the interrupt has been acknowledged by the MCU the Operation register is automatically reset to "NoOp". Writing "NoOp" in the register when conversion operation is running, aborts the current operation. Other changes are not accepted during any operation. Figure 7-28. Typical Data Acquisition Flow
ASIC3 (MFIRST = 0) ASIC2 (MFIRST = 0) ASIC1 (MFIRST = 1) MCU
Init State Opstatus = NoOP Status Cleared
Init State Opstatus = NoOP Status Cleared
Init State Opstatus = NoOP Status Cleared
...
Set Operation = ACQ*/CAL*
Runs Conversion Opstatus = Running Conversion Finished Opstatus = Result Available Status = Data Ready IRQ DATA RDY
Runs Conversion Opstatus = Running Conversion Finished Opstatus = Result Available Status = Data Ready IRQ DATA RDY
Runs Conversion Opstatus = Running Conversion Finished Opstatus = Result Available Status = Data Ready IRQ DATA RDY Background Tasks/Idle
Opstatus = NoOP Status Cleared
ASIC3 Read/Check Opstatus Read/Check Status
Opstatus = NoOP Status Cleared
ASIC2 Read/Check Opstatus Read/Check Status
Opstatus = NoOP IRQ Acknowledged Status Cleared
ASIC1 Read/Check Opstatus Read/Check Status ASIC3 Burst Read Data ASIC2 Burst Read Data ASIC1 Burst Read Data
...
42
ATA6870 [Preliminary]
9116B-AUTO-10/09
ATA6870 [Preliminary]
7.8.1.4 OpStatus Register Table 7-33. OpStatus Register Overview
OpStatus 0x03 6 x 5 x 4 x 3 x Reset Value 2 x 1 0x00 0 (lsb) OpStatus
Register Address 7 (msb) x
Table 7-34.
OpStatus Register Content
Description 00: No Operation 01: Operation is ongoing 10: Operation is finished, result is available 11: Operation is cancelled, result is not available
Bit Field
OpStatus
Figure 7-29. Operation Status Register Management
User reads Operation Status Register, Reset
NO OP
Users programs conversions operation
Operation Running
Users programs NoOp End of conversion
Operation Aborted, Result not Available
Operation Finished, Result Available
User programs conversion operation or reads operation status register
Status reg has been read and: User programs conversion operation or reads operation status register
The OPStatus register is reset when read after a completed or aborted operation. Reading the register before starting an operation is not mandatory. Reading data conversion results or reading the OpStatus Register during an operation does not affect the OpStatus register.
43
9116B-AUTO-10/09
7.8.1.5
Rstr Register Table 7-35. Rstr Register Overview
Rstr 0x04 6 x 5 x 4 x 3 x Reset Value 2 x 1 LFTRst 0x00 0 (lsb) 0
Register Address 7 (msb) x
Table 7-36.
Rstr Register Content
Description 0: No reset 1: Low Frequency Timer software reset
Bit Field LFTRst
LFTRst resets and restarts the low frequency timer if not disabled (LFTimer_ena = 0). 7.8.1.6 IrqMask Register Table 7-37.
Register Address 7 (msb) x 6 x 5 x 0x05 4 3
IrqMask Register Overview
IrqMask Reset Value 2 1 0x00 0 (lsb)
chkErrorMask udvmask commErrorMask LFTdoneMask dataDryMask
Table 7-38.
Bit Field
IrqMask Register Content
Description Mask data ready interrupt when set to 1 Mask LFTdone interrupt when set to 1 Mask commError interrupt when set to 1 Mask undervoltage detection interrupt when set to 1 Mask checksum error interrupt when set to 1
dataRdyMask WakeupMask commErrorMask udvMask chkErrorMask
44
ATA6870 [Preliminary]
9116B-AUTO-10/09
ATA6870 [Preliminary]
7.8.1.7 Status Register Table 7-39. Status Register Overview
Status 0x06 6 TFMdeOn 5 por 4 chkError 3 udv Reset Value 2 commError 1 LFTdone 0x10 0 (lsb) dataRdy
Register Address 7 (msb) x
Table 7-40.
Bit Field dataRdy LFTdone
Status Register Content
Description Conversion finished Low frequency timer elapsed Bad SPI command detected (wrong length) Undervoltage detected Error on checksum check Power on reset detected Test mode on
commError udv chkError Por TFMdeOn
Any bit among {dataRdy, LFTdone, commError, udv, chkError} set in the status register requests an interrupt to the external MCU if the corresponding mask bit in the IrqMask register is 0. Reading the status register acknowledges the interrupt and resets its content. Por and TFMdeOn cause no interrupt.
45
9116B-AUTO-10/09
7.8.1.8
ChannelUdvStatus Register Table 7-41.
Register Address 7 (msb) x 6 x 5 0x08 4 3
ChannelUdvStatus Register Overview
ChannelUdvStatus Reset Value 2 1 0x00 0 (lsb)
chUdv6_stat chUdv5_stat chUdv4_stat chUdv3_stat chUdv2_stat chUdv1_stat
Table 7-42.
ChannelUdvStatus Register Content
Description 1: Undervoltage detected on channel 1 0: No undervoltage detected on channel 1 1: Undervoltage detected on channel 2 0: No undervoltage detected on channel 2 1: Undervoltage detected on channel 3 0: No undervoltage detected on channel 3 1: Undervoltage detected on channel 4 0: No undervoltage detected on channel 4 1: Undervoltage detected on channel 5 0: No undervoltage detected on channel 5 1: Undervoltage detected on channel 6 0: No undervoltage detected on channel 6
Bit Field chUdv1_stat chUdv2_stat chUdv3_stat chUdv4_stat chUdv5_stat chUdv6_stat
Undervoltage is detected when voltage decreases under the threshold value defined in udvThresh register. When undervoltage is detected on a channel, the ATA6870 requests an interrupt if the UDVmask bit in the IRQMask register is 0.
46
ATA6870 [Preliminary]
9116B-AUTO-10/09
ATA6870 [Preliminary]
7.8.1.9 ChannelDischSel Register Table 7-43. ChannelDischSel Register Overview
ChannelDischSel 0x09 6 x 5 4 3 chV6_disch chV5_disch chV4_disch Reset Value 2 1 0x00 0 (lsb)
Register Address 7 (msb) x
chV3_disch chV2_disch chV1_disch
Table 7-44.
ChannelDischSel Register Content
Description 1: Enable voltage channel 1 discharge 0: Disable voltage channel 1 discharge 1: Enable voltage channel 2 discharge 0: Disable voltage channel 2 discharge 1: Enable voltage channel 3 discharge 0: Disable voltage channel 3 discharge 1: Enable voltage channel 4 discharge 0: Disable voltage channel 4 discharge 1: Enable voltage channel 5 discharge 0: Disable voltage channel 5 discharge 1: Enable voltage channel 6 discharge 0: Disable voltage channel 6 discharge
Bit Field chV1_disch chV2_disch chV3_disch chV4_disch chV5_disch chV6_disch
The channels are dischargeable simultaneously. 7.8.1.10 ChannelReadSel Register Table 7-45. ChannelReadSel Register Overview
ChannelReadSel 0x0A 6 5 4 3 Reset Value 2 1 ChannelReadSel 0x00 0 (lsb)
Register Address 7 (msb)
47
9116B-AUTO-10/09
Table 7-46.
Bit Field
ChannelReadSel Register Content
Description 111: Value of the LFT is returned in DataRd16 register 110: Temperature channel available in DataRd16 register 101: Voltage channel6, value available in DataRd16 register 100: Voltage channel5, value available in DataRd16 register 011: Voltage channel4, value available in DataRd16 register 010: Voltage channel3, value available in DataRd16 register 001: Voltage channel2, value available in DataRd16 register 000: Voltage channel1, value available in DataRd16 register
ChannelReadSel
This register can be used to quickly read a single channel without using a full burst access. The value of the selected channel will be available in the DataRd16 register. The value will always be updated by writing a channel address to the ChannelReadSel register. Data in this register is not valid during ongoing data conversion. 7.8.1.11 LFTimer Register LFTimer Register Overview
Register Address 7 (msb) LFTPrescaler 6 5 0x0B 4 3 LFTDelay LFTimer Reset Value 2 1 0xF9 0 (lsb)
Table 7-47.
Bit Field
LFTimer Register Content
Description Contains the present Low Frequency Timer delay value 0: PrescalerValue = 1 1: PrescalerValue = 6
LFTDelay LFTPrescaler
The default timer value is 59.965s (0xF9) for fOSC = 50 kHz. Figure 7-30. Block Diagram LFTimer
LFTprescaler LFTdelay
50 kHz
/4096 /6
7-bit counter
Comp
Delay Time elapsed
clear
Formula for Delay Time calculation:
LFTprescaler D 1Delay Time = ------------------------ x 4096 x ( 6 ) x ( LFTdelay D + 1 ) T OSC [Hz]
48
ATA6870 [Preliminary]
9116B-AUTO-10/09
ATA6870 [Preliminary]
The LFT can be programmed to the following values (fOSC = 50 kHz): LFTprescaler = 0: LFTprescaler = 1: 0.082s <= duration <= 10.486s, Increment = 82 ms 492 ms <= duration <= 62.915s, Increment = 492 ms
When LFT elapsed, an interrupt is requested unless LFTdoneMask bit is set in the IRQMask register. For details on the tolerances for the oscillator, see Section 7.5.6 "RC Oscillator" on page 25. Keeping at list 100 s between two successive LFTimer register write accesses prevents internal metastability issues, which might result in bad LFTdelay decoding. 7.8.1.12 Test-Mode Register Table 7-48. Test-Mode Register 1 Overview
TESTmode1 0x0C 6 0 5 0 4 0 3 0 Reset Value 2 0 1 1 0x03 0 (lsb) 1
Register Address 7 (msb) 0
Table 7-49.
Test-Mode Register 2 Overview
TESTmode2 0x0D 6 0 5 0 4 0 3 0 Reset Value 2 1 1 1 0x07 0 (lsb) 1
Register Address 7 (msb) 0
Table 7-50.
Test-Mode Register 3 Overview
UdvThresh 0x12 12 0 11 0 10 1 9 1 8 1 7 1 6 0 Reset value 5 0 4 0 3 0 2 0 0x0E00 1 0 0 0
Register Address 15 0 14 0 13 0
Test-Mode registers 1, 2, and 3 are reserved for the factory calibration process. They are not allowed for customer use.
49
9116B-AUTO-10/09
7.8.1.13
UdvThresh Register Table 7-51. UdvThresh Register Overview
UdvThresh 0x10 12 x 11 10 9 8 7 6 Reset value 5 4 3 2 udvThresh 0x0570 1 0
Register Address 15 x 14 x 13 x
Table 7-52.
Bit Field
UdvThresh Register Content
Format 12 bits Description Threshold for undervoltage detection
udvThresh
Default value is 1.5V (0x0570, 1392D) 1.5V = VREF x (1392 - 410) / (1502 - 410) See also Section 7.5.1.2 "12 Bits Incremental ADC" on page 19. 7.8.1.14 DataRd16 Register Table 7-53. DataRd16 Register Overview
DataRd16 0x11 12 x 11 10 9 8 7 6 Reset value 5 4 3 2 DataRd16 0x0000 1 0
Register Address 15 x 14 x 13 x
Table 7-54.
Bit Field
DataRd16 Register Content
Format 12 bits Description Return selected channel value (see Section 7.8.1.10 "ChannelReadSel Register" on page 47)
DataRd16
50
ATA6870 [Preliminary]
9116B-AUTO-10/09
ATA6870 [Preliminary]
7.8.1.15 DataRd16burst Register Table 7-55. DataRd16burst Register Overview
DataRd16Burst 0x7F 108 x 92 x 76 x 60 x 44 x 28 x 12 x 11 10 9 8 7 27 26 25 24 23 43 42 41 40 39 59 58 57 56 55 75 74 73 72 71 91 90 89 88 87 107 106 105 104 103 102 86 70 54 38 22 6 Reset value 101 85 69 53 37 21 5 100 84 68 52 36 20 4 99 83 67 51 35 19 3 98 82 66 50 34 18 2 Channel6 data 81 65 49 33 17 1 80 64 48 32 16 0 Channel5 data Channel4 data Channel3 data Channel2 data Channel1 data Temperature data 0x0000 97 96
Register Address 111 X 95 x 79 x 63 x 47 x 31 x 15 x 110 X 94 x 78 x 62 x 46 x 30 x 14 x 109 X 93 x 77 x 61 x 45 x 29 x 13 x
Table 7-56.
Bit Field
DataRd16burst Register Content
Format 112 bits Description Returns the values of all channels from one ATA6870, including temperature measurement
DataRd16burst
51
9116B-AUTO-10/09
Figure 7-31. Application
10
1 k 100 nF
1.5 k
CS_N_OUT
CLK_OUT
MISO_IN
DISCH6
PD_N
SCK_OUT
MBAT6
MOSI_OUT
VDDHVP
VDDHV
MBAT7
IRQ_IN
VDDHVM
1 k 100 nF
DISCH5 MBAT5
+ 33 F 220 nF
PD_N_OUT POW_ENA
1 k 100 nF
DISCH4 MBAT4 PWTST ATST BIASRES
1 k 100 nF
DISCH3 MBAT3
121 k
ATA6870
TEMPVREF TEMP2
1 k 100 nF
DISCH2 MBAT2 TEMP1 TEMPVSS
+ NTC NTC 10 F 100 nF
1 k 100 nF
SCANMODE
DISCH1
CS_N DTST MOSI MISO
AVSS
VDDFUSE CS_FUSE
IRQ
DVDD
DVSS
1 k
CLK
MFIRST
MBAT1
SCK
GND AVDD
10 nF 10
10
1 k 100 nF
CS_N_OUT
CLK_OUT
SCK_OUT
MOSI_OUT
MBAT6
VDDHVP
VDDHV
MISO_IN
DISCH6
MBAT7
IRQ_IN
PD_N
VDDHVM
1 k 100 nF
DISCH5 MBAT5
+ 33 F 220 nF + 10 F 100 nF
PD_N_OUT POW_ENA
1 k 100 nF
DISCH4 MBAT4 PWTST ATST BIASRES
1 k 100 nF
DISCH3 MBAT3
121 k
ATA6870
TEMPVREF TEMP2
1 k 100 nF
DISCH2 MBAT2 TEMP1 TEMPVSS
1 k 100 nF
SCANMODE
NTC
NTC
DISCH1
CS_N DTST MOSI MISO
AVSS
VDDFUSE CS_FUSE
IRQ
DVDD
DVSS
1 k
CLK
MFIRST
MBAT1
SCK
GND AVDD
10 nF 10
VDD
MISO MOSI SCK CSN CLK IRQ
OUT
Microcontroller
GND
Figure 7-31 shows an application with 2 stacked ATA6870s.
52
ATA6870 [Preliminary]
9116B-AUTO-10/09
ATA6870 [Preliminary]
8. Ordering Information
Extended Type Number ATA6870-PLPW ATA6870-PLQW Package QFN48, 7 x 7 QFN48, 7 x 7 MOQ 1,000 pieces 4,000 pieces
9. Package Information
Package: VQFN_7 x 7_48L Exposed pad 5.6 x 5.6 Dimensions in mm Not indicated tolerances 0.05 Top 48 1 Pin 1 identification 36 37 48 1 Bottom 5.60.15
12 Z 0.2 0.90.1
25 24 5.5 13
12
7
0.5 nom.
Z 10:1
0.40.1
Drawing-No.: 6.543-5130.01-4 Issue: 1; 21.03.06 0.230.07
technical drawings according to DIN specifications
9.1
Markings
As a minimum, the devices will be marked with the following: * Date code (year and week number) * Atmel(R) part number (ATA6870)
53
9116B-AUTO-10/09
10. Revision History
Please note that the following page numbers referred to in this section refer to the specific revision mentioned, not to this document. Revision No. History * * * * * * * * * * * * * * * * * * * * * Table 3-1 "Pin Description" on page 4 changed Table 5 "Abs.Max.RAtings" changed Table 7-1 "Electrical Characteristics" on page 11 changed Table 7-5 "Electrical Characteristics" on page 16 changed Table 7-7 "Electrical Characteristics" on page 19 changed Table 7-9 on page 21 changed Table 7-11 "Battery Cell Temperature Measuring Characteristics" on page 23 changed Table 7-12 "Battery Cell Temperature Measuring Characteristics" on page 24 changed Section 7.5.7 "Power On Reset" on page 25 changed Table 7.15 "Battery Cell Temperature Measuring Characteristics" on page 25 changed Figure 7-13 "Host Interface" on page 26 changed Figure 7-14 "SPI Transaction Field Organization" on page 28 changed Section 7.6.4.7 "CHKSUM Field" on page 34 changed Table 7-19 "Electrical Characteristics" on page 35 changed Table 7-22 "Electrical Characteristics" on page 37 changed Table 7-23 "Electrical Characteristics" on page 37 changed Table 7-26 "Register Mapping" on page 40 changed Table 7-32 "Operation Register Content" on page 42 changed Section 7.8.1.5 "Rstr Register" on page 44 changed Table 7.55 "DataRd16burst Register Overview" on page 51 changed Figure 7-31 "Application" on page 52 changed
9116B-AUTO-10/09
54
ATA6870 [Preliminary]
9116B-AUTO-10/09
Headquarters
Atmel Corporation 2325 Orchard Parkway San Jose, CA 95131 USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600
International
Atmel Asia Unit 1-5 & 16, 19/F BEA Tower, Millennium City 5 418 Kwun Tong Road Kwun Tong, Kowloon Hong Kong Tel: (852) 2245-6100 Fax: (852) 2722-1369 Atmel Europe Le Krebs 8, Rue Jean-Pierre Timbaud BP 309 78054 Saint-Quentin-en-Yvelines Cedex France Tel: (33) 1-30-60-70-00 Fax: (33) 1-30-60-71-11 Atmel Japan 9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581
Product Contact
Web Site www.atmel.com Technical Support auto_control@atmel.com Sales Contact www.atmel.com/contacts
Literature Requests www.atmel.com/literature
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.
(c) 2009 Atmel Corporation. All rights reserved. Atmel (R), Atmel logo and combinations thereof, and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.
9116B-AUTO-10/09


▲Up To Search▲   

 
Price & Availability of ATA6870

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X